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Abstract

Context

Obesity is a growing global health concern. The increased body mass and altered mass dis-

tribution associated with obesity may be related to increases in plantar shear that putatively

leads to physical functional deficits. Therefore, measurement of plantar shear may provide

unique insights on the effects of body mass and body distribution on physical function or

performance.

Purpose

1) To investigate the effects of body mass and distribution on plantar shear. 2) To examine

how altered plantar shear influences postural control and gait kinetics.

Hypothesis

1) a weighted vest forward distributed (FV) would shift the center of pressure (CoP) location

forward during standing compared with a weighted vest evenly distributed (EV), 2) FV would

increase plantar shear spreading forces more than EV during standing, 3) FV would

increase postural sway during standing while EV would not, and 4) FV would elicit greater

compensatory changes during walking than EV.

Methods

Twenty healthy young males participated in four different tests: 1) static test (for measuring

plantar shear and CoP location without acceleration, 2) bilateral-foot standing postural con-

trol test, 3) single-foot standing postural test, and 4) walking test. All tests were executed in

three different weight conditions: 1) unweighted (NV), 2) EV with 20% added body mass,

and 3) FV, also with 20% added body mass. Plantar shear stresses were measured using a

pressure/shear device, and several shear and postural control metrics were extracted.

Repeated measures ANOVAs with Holms post hoc test were used to compare each metric

among the three conditions (α = 0.05).
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Results

FV and EV increased both AP and ML plantar shear forces compared to NV. FV shifted CoP

forward in single-foot trials. FV and EV showed decreased CoP range and velocity and

increased Time-to-Boundary (TTB) during postural control compared to NV. EV and FV

showed increased breaking impulse and propulsive impulse compared to NV. In addition,

EV showed even greater impulses than FV. While EV increased ML plantar shear spreading

force, FV increased AP plantar shear spreading force during walking.

Conclusion

Added body mass increases plantar shear spreading forces. Body mass distribution had

greater effects during dynamic tasks. In addition, healthy young individuals seem to quickly

adapt to external stimuli to control postural stability. However, as this is a first step study, fol-

low-up studies are necessary to further support the clinical role of plantar shear in other pop-

ulations such as elderly and individuals with obesity or diabetes.

Introduction

Increased body mass inherently causes greater loading under the plantar surface of the foot

during weight-bearing activity [1–3] Complications such as balance issues, falls and lower

extremity injuries [4–6] in the obese population may be related to the altered biomechanics

and plantar loading that arises from a chronically increased body mass. In addition, obesity

typically positions the whole body center of mass (CoM) further anterior, altering loading dis-

tributions. This altered loading likely has a direct influence on obesity related complications

such as postural instability [7] and increased fall risk [4], increased lower extremity muscle

activity [8], altered gait mechanics [9], and reduced plantar cutaneous mechanoreceptor sensi-

tivity [10]. Chronically increased loading may also cause foot deformities [11] and plantar tis-

sue adaptations [11], such as increased skin thickness and hardness [12, 13], which may

further reduce mechanoreceptor sensitivity and in turn further affect gait and balance.

Because body mass and body mass distribution by themselves can alter plantar loads, isolat-

ing and studying their acute effects on plantar loading may be helpful in understanding the

mechanisms behind biomechanical complications in the obese population. For instance, non-

obese individuals with added loads show increased plantar pressure [14] and reduced plantar

cutaneous sensitivity [15]. The latter is likely due to Weber’s law, where increased pressure

stimulus results in a higher mechanoreceptor detection threshold [16]. However, increased

body mass alone does not fully explain the increased postural sway and altered gait mechanics

in individuals with obesity [17–20]. For example, non-obese individuals wearing an evenly dis-

tributed load have shown similar [21] or even decreased postural sway [20] compared to wear-

ing an unevenly distributed load, which increases sway [20, 21], particularly in somatosensory

compromised environments (e.g. eyes closed) [22]. Although previous studies have investi-

gated the effects of added body mass and altered mass distribution on postural control and gait

mechanics, these have focused almost exclusively on load carriage applications, such as mili-

tary personnel [20] or students who carry heavy backpacks [21]. To our knowledge, no studies

have used added body mass to simulate the forward mass distribution that occurs with obesity.

Our feet are impacted not only by vertical pressure, but also by horizontal shear stresses.

While the net shear components of the ground reaction force are relatively much lower than
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the vertical component, they may have a large influence on plantar tissue breakdown and

mechanoreceptor sensitivity. Plantar tissue spreading is likely increased with added body

mass, as evidenced by a greater foot contact area in individuals with obesity [2]—this spread-

ing may be more apparent when analyzing shear stresses than pressure. In addition, the foot’s

sole contains numerous fast adapting mechanoreceptors [23], which are sensitive to small

changes in stimuli. Changes in shear stresses can be similar to changes in vertical pressure,

thus having a relatively higher change compared to baseline values [24]. In addition, net shear

forces are directly proportional to CoM-CoP differences and therefore carry phasic sway-rele-

vant information needed for balance [24, 25]. While the importance of shear stresses on mech-

anoreceptor function and postural control was recognized two decades ago [25], shear

distribution measurements have been hampered by technological limitations. Recent advances

in shear sensing technology have enabled accurate measurement of shear stress [26] and may

provide us with a first look at how added body mass affects plantar shear stresses.

The purpose of this study was to investigate the effects of added body mass and distribution

on plantar shear stresses in non-obese individuals, both in standing and walking. We also

sought to preliminarily assess their effects on postural stability. We hypothesized that 1) a

front-loaded weighted vest (FV) would shift the CoP location forward during standing com-

pared to an evenly distributed weighted vest (EV), 2) FV would increase plantar shear spread-

ing forces more than EV during standing, 3) FV would increase postural sway during standing

while EV would not, and 4) FV would elicit greater compensatory changes during walking

than EV, resulting in altered plantar impulses and plantar shear spreading forces.

Methods

Participants

A sample of 20 young healthy male participants were recruited (age = 23 ± 3.10 years;

height = 180 ± 0.05 cm; mass = 75 ± 8.02 kg; BMI = 23 ± 1.85 kg/m2). In consideration of the

distinct body fat accumulation tendencies [27] as well as movement differences [28] between

sexes, we recruited only male participants. Young adults were chosen to minimize the influ-

ence of altered muscle strength [29] or spatiotemporal gait factors in older age groups [30].

Inclusion criteria consisted of normal body weight—BMI: 20–25% defined by World Health

Organization (WHO) [31]. Participants were screened using the Lower Extremity Functional

Scale (LEFS) [32] and excluded if they had issues with the lower limb musculoskeletal system

affecting mobility or balance such as symptomatic osteoarthritis, any known heart disease, any

neurological conditions such as diabetes, or lower and upper extremity injuries in the past 6

months. Participants also had to be able to stand and walk unassisted with an added load. This

study was conducted in accordance with the declaration of Helsinki. All participants were vol-

unteers and signed an informed consent form approved by the Brigham Young University

Institutional Review Board (Protocol # F19248).

Protocol

Participants performed four tests in the following order: 1 –static stance, 2 –bilateral-foot pos-

tural control, 3– single-foot postural control, and 4 –walking. Three different weight condi-

tions were used in each test: Unweighted (NV), evenly distributed weighted vest (EV), and

front-loaded weighted vest (FV) (Fig 1). The order of the weight conditions was randomized

within each test. For both weighted conditions, 20% of the participant’s body mass was added,

in the form of individuals 0.45 kg sand bags. The 20% added weight increased mean BMI to

27.80 (± 2.22 kg/m2). According to WHO’s obesity definition [31], this would classify the par-

ticipants with the added weight in the range of overweight. For EV, weights were added equally
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to the front and back of an exercise vest (Valeo VA4471, Houston, TX USA), while for FV, the

same amount of weight was added to the front of the body using a baby carrier (Sunveno

sv22094, New Delhi India) (Fig 1). The baby carrier was used in place of the exercise vest

because it better accommodated an asymmetrical load and was more comfortable around the

shoulders and neck when fully front loaded. Participants were given several minutes to accli-

mate to the vest conditions prior to testing. In addition, to minimize muscle fatigue, partici-

pants were provided with a 1-minute seated rest period between each trial and a 3-minute

seated rest period between each test.

A pressure and shear measurement device (FootSTEPS, Innovative Scientific Solutions,

Inc., Dayton OH, USA) was used to collect all plantar force data, sampling at 25 Hz. for stand-

ing trials and 50 Hz. for walking. Details regarding the device hardware and measurement

validity have been published previously [26]. Briefly, the device consists of a glass plate with an

embedded stress sensitive polymer film (0.42 by 0.28 m area). A camera underneath the plate

captures film displacements which are converted to vertical pressure and mediolateral and

anteroposterior shear stress distributions using a finite element reconstruction model. A force

plate (AMTI, Watertown MA, USA) mounted underneath the device is used for calibration.

Adjustable height staging panels (StageRight Z-HD, Clare, MI, USA) were used to make a plat-

form and walkway that was flush with the sensing surface (Fig 1). A hole was cut in the center

panel for the sensor and a small (< 1 cm) gap was maintained around the device perimeter.

The static stance test was used to evaluate the influence of added mass on plantar forces

without the confounding influences of the small accelerations that can accompany balance

tests. Thus, this test consisted of an assisted standing posture. The participant stood barefoot

in front of the pressure/shear sensor. Once given a starting sign from a researcher, the partici-

pant took a step onto the sensor. The participant was instructed to initially step his dominant

foot on the sensor and then to sequentially settle the opposite foot next to the dominant foot.

Assistance was provided in the form of a fixed bar placed in front of the sensor. Once putting

feet together on the sensor, the participant was instructed to lightly touch the bar only with his

fingertips, but not to grasp, push, or pull (Fig 1). To standardize posture as well as minimize

Fig 1. Raised platform/walkway, weight conditions, and standing tests. Left: Static trial with evenly distributed (EV) weight. Middle: Bilateral-foot

standing trial with front weight (FV). Right: Single-foot standing trial with EV.

https://doi.org/10.1371/journal.pone.0246605.g001
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reliance on the bar, the participant was instructed to watch a screen in front of the participant

that showed the participant in profile superimposed on a grid. The grid was provided by a

motion capture system (Qualisys, Inc., Gothenburg, Sweden) linked to the screen. Four reflec-

tive markers were used to enable the participant to maintain an upright standing position.

These markers were attached to the lateral shoulder, greater trochanter, femoral epicondyle,

and malleolus on the left side, forming a line. The participant was asked to maintain alignment

of these four markers on a line of the grid in order to maintain consistent upright position dur-

ing the test. Three trials of 25 seconds each were recorded. To avoid extraneous movements at

the beginning and end of a trial, we removed the first 7 and last 5 seconds, thus, the actual

recording period was 13 seconds.

For both postural control tests (Fig 1), the participant took one step onto the sensor once a

researcher gave a starting sign, placed hands on iliac crests, and stood as still as possible. The

bar and grid were not used, but the participant was instructed to visually focus on a marked

area at approximately eye level. For the 2-foot tests, the participant was instructed to place

both feet so that they were touching, in as narrow a stance as possible. In the single-foot stand-

ing, a participant stood on his dominant foot, bending his opposite knee in order to avoid the

foot touching the ground. Three successful trials of 25 seconds each were recorded for each

test. Trials were discarded if hands were taken off the hip or the toes of the opposite leg

touched the ground (in the single-foot trials) during the recording. Again, the first 7 and last 5

seconds were also removed prior to processing.

In the walking test, preferred walking speed was first determined in order to minimize con-

founding factors, considering that walking speed by itself affects gait mechanics [33]. While a

participant walked barefoot back and forth on the walkway (5.5 m long and 1.0 m wide), aver-

age walking speed was measured using laser timers placed near each end of the middle third of

the walkway. The same laser timers were used to monitor walking speed during the actual test.

The participant was instructed to walk as normal as possible and to keep looking straight

ahead. The starting position was adjusted by a researcher to ensure full contact of the domi-

nant foot on the sensing area. Moreover, the participant received verbal feedback after a walk-

ing trial in order to maintain the walking speed within ± 10% of his average walking speed.

Three successful trials (i.e. clean foot contacts at average walking speed) were collected.

Data analysis

Data from the pressure/shear device was first processed in manufacturer supplied software, as

described previously [26]. Raw shear stress and reconstructed pressure data were then

imported into custom LabView software (National Instruments, Austin TX, USA) for data

analysis.

For static stance, mean AP and ML plantar spreading shear forces and AP CoP location

were extracted. To determine plantar spreading forces, all directional shear stresses were

summed separately and multiplied by the pixel areas to create directional shear GRFs. Specifi-

cally, anterior directed shear stresses were separated from posterior directed shear stresses;

likewise, medial and lateral shear stresses were separated from each other. AP and ML spread-

ing was then determined as the amount of each directional force that opposed the main direc-

tional force. For example, if anterior force exceeded posterior force, the absolute value of the

posterior force was used to represent plantar spreading. CoP was calculated as the weighted

average of all pressure pixel locations (xi), weighted by vertical force (Fvi) (Eq (1)). This was

expressed in the AP direction as a percentage of foot length, relative to the heel. To do this, a

composite plantar pressure image was constructed (max value of each pixel across time) and

the maximum anterior and posterior boundaries of the footprint were identified using
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pressure thresholds.

CoPAP ¼

P
ðFvi � xiÞP

Fvi
ð1Þ

For the postural control tests, the following dependent variables were extracted: AP CoP

location, mean CoP speed, AP and ML CoP range, and AP and ML TTB. These measures were

chosen to represent a broad range of previously published metrics from the postural control

literature. CoP location was calculated in the same way as it was in static stance. Mean CoP

speed was obtained by summing instantaneous CoP displacements (i.e. path length) and divid-

ing by total trial duration (13 seconds). CoP range was represented as the difference between

maximum and minimum CoP values in both AP and ML directions. TTB was calculated as

previously described for both AP and ML directions [34]. Briefly, rectangular AP and ML

boundaries were identified from a composite pressure image. The distance between the

boundary and the instantaneous CoP location were divided by instantaneous velocity (central

difference) in that direction. For example, if CoP was moving toward the metatarsal heads or

anterior boundary, the distance between the anterior boundary and the CoP was divided by

the instantaneous velocities which corresponded to the anterior direction. AP and ML TTB(s)

were obtained separately. From the TTB time series, we calculated the mean of all local signal

minima.

For the walking test, the following dependent variables were extracted: braking (posterior)

impulse, propulsive (anterior) impulse, and AP and ML plantar shear spreading at midstance.

Braking and propulsive impulses were obtained from the net AP forces using trapezoidal inte-

gration. For braking impulse, the area from heel strike to midstance was obtained, while for

propulsive impulse, the area from midstance to toe-off was obtained. AP and ML plantar

spreading forces were calculated in the same way as was done for the static test, but extracted

at midstance rather than taking the mean across stance. All metrics were averaged across trials.

Statistical analysis

All metrics were compared across weight conditions using repeated measures analysis of vari-

ance (ANOVA). For statistically significant main effects (p< 0.05), a post hoc test, Holm

method, was used for pairwise comparisons. In addition, eta squared effect size was calculated

(η2). Based on Cohen’s guideline, eta effect size was defined as small (η2 = 0.01), medium (η2 =

0.06), and large (η2 = 0.14) effects [35]. Mauchly’s test was used to check sphericity violation. If

sphericity was violated, Greenhouse-Geisser test or Huynh-Feldt test was used to correct the

violation depending on 0.75 of the epsilon values. If the epsilon is bigger than 0.75, Green-

house-Geisser test was used to correct sphericity violation. Otherwise, Huynh-Feldt was

selected for correction of sphericity violation. Furthermore, the Benjamini–Hochberg proce-

dure with a false-discovery rate of 0.10 was used on the ANOVA main effects to account for

the multiple tests performed.

Results

Of the 20 total metrics analyzed (3 static, 12 postural control, 5 walking), 17 showed significant

main effects due to the weight conditions (Tables 1–3). One of these (AP CoP range bilateral-

foot) had a p-value greater than 0.05 (0.058), but was identified as significant by the Benjamini

Hochberg procedure.

PLOS ONE Added body mass alters plantar shear stresses, postural control, and gait kinetics: Implications for obesity

PLOS ONE | https://doi.org/10.1371/journal.pone.0246605 February 5, 2021 6 / 16

https://doi.org/10.1371/journal.pone.0246605


Static test

ANOVA showed main effects on plantar spreading forces in both AP (p< .001) and ML (p<
.001) directions. The pairwise comparisons revealed that both AP and ML plantar shear forces

were greater in FV and EV than in NV while differences were not seen between FV and EV

(Fig 2). There were no differences in CoP location between the weight conditions (p = 0.176)

(Fig 2). Table 1 provides the outcomes of the static test in summary.

Postural control tests

As with CoP location in the static test, CoP location in the bilateral-foot trials showed no dif-

ferences (p = .36) (Fig 3). However, there were main effects on CoP location in the single-foot

Table 1. Descriptive information from static test (Mean ± SD).

FV NV EV P-value (η2)

AP Plantar Shear Force (N) 27.8 ± 6.2� 23.0 ± 6.4 29.7 ± 5.9� < 0.001 (0.45)

ML Plantar Shear Force (N) 41.9 ± 8.4� 31.2 ± 10.0 39.1 ± 7.6� < 0.001 (0.47)

AP CoP Location (%) 47.2 ± 6.0 45.4 ± 5.7 46.88 ± 5.2 0.176 (0.09)

P-value is ANOVA main effect.

� Significant compared to NV.

https://doi.org/10.1371/journal.pone.0246605.t001

Table 3. Descriptive information of walking test (Mean ± SD).

FV NV EV P-value (η2)

Braking Impulse (N•sec) 9.5 ± 2.4� 8.1 ± 2.2 10.1 ± 2.4�¶ < 0.001 (0.61)

Propulsive Impulse (N•sec) 10.7 ± 2.1� 9.0 ± 1.5 11.6 ± 2.2�¶ < 0.001 (0.69)

AP Spread at Midstance (N) 31.3 ± 5.6�+ 25.5 ± 4.3 29.0 ± 5.6� < 0.001 (0.48)

ML Spread at Midstance (N) 21.4 ± 5.2� 18.1 ± 4.0 23.7 ± 4.8�¶ < 0.001 (0.55)

p-value is main effect.

� Significant compared to NV.
¶ Significant compared to FV.
+ Significant compared to EV.

https://doi.org/10.1371/journal.pone.0246605.t003

Table 2. Descriptive information of postural control test¶ (Mean ± SD).

Bf_FV Bf_NV Bf_EV p-value of Bf (η2) Sf_FV Sf_NV Sf_EV p-value of Sf (η2)

AP CoP location (%) 44.7 ± 6.1 45.5 ± 6.1 44.4 ± 6.6 0.360 (0.05) 51.6 ± 3.1�+ 49.9 ± 2.9 49.9 ± 3.4 0.011 (0.21)

CoP Speed (cm/sec) 5.4 ± 1.2 7.3 ± 1.6+¶ 5.8 ± 1.3¶ < 0.001 (0.78) 7.0 ± 1.7 7.8 ± 2.6+¶ 6.8 ± 2.1 0.012 (0.21)

AP CoP Range (cm) 2.5 ± 0.5 2.8 ± 0.5 2.8 ± 0.6 0.058§ (0.14) 3.6 ± 0.6 3.8 ± 0.6 3.7 ± 0.7 0.392 (0.05)

ML CoP Range (cm) 2.9 ± 0.7 3.3 ± 0.7+¶ 3.1 ± 0.5 0.002 (0.24) 3.7 ± 0.6 4.3 ± 0.9+¶ 3.8 ± 0.9 0.005 (0.28)

AP TTB (sec) 4.6 ± 1.4� 3.3 ± 0.9 4.4 ± 1.5� < 0.001 (0.60) 3.3 ± 0.9 3.0 ± 0.7 3.5 ± 0.7� 0.015 (0.20)

ML TTB (sec) 2.4 ± 0.4� 1.8 ± 0.3 2.3 ± 0.3� < 0.001 (0.76) 1.1 ± 0.3 0.9 ± 0.3 1.1 ± 0.4� 0.029 (0.17)

Bf is bilateral-foot. Sf is single-foot. p-value is main effect.

� Significant compared to NV.
¶ Significant compared to FV.
+ Significant compared to EV.
§ Main effects from Benjamini-Hochberg procedure despite p> .05.

https://doi.org/10.1371/journal.pone.0246605.t002
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trials (p = .011), with the pairwise comparisons revealing that the CoP location was more ante-

rior in FV as compared to NV and EV (Fig 3). The statistical analysis showed main effects on

CoP speed in bilateral-foot trials (p< .001) and single-foot trials (p = .012) with FV and EV

decreased compared to NV, and FV further reduced compared to EV just in the bilateral-foot

trials (Fig 3).

The Benjamini-Hochberg procedure found main effects on AP CoP range in bilateral-foot

trials (p = .058), but no pairwise comparisons were significant (Fig 4). No main effects were

noted in AP CoP range in single-foot trials (p = .392). Meanwhile, ANOVA showed main

effects on ML CoP range in bilateral-foot trials (p = .002) and in single-foot trials (p = .005).

The post hoc tests revealed that FV and EV decreased ML CoP range in comparison to NV

(Fig 4).

For AP TTB, ANOVA found main effects in bilateral-foot trials (p< .001) and in single-

foot trials (p = .015). The post hoc tests observed that FV and EV increased AP TTB in bilat-

eral-foot trials as compared to NV while only EV showed an increase in AP TTB in single-foot

trials compared to NV (Fig 5). Likewise, the statistical analysis showed main effects on ML

TTB in bilateral-foot trials (p< .001) and in single-foot trials (p = .029). The post hoc tests

observed that, similar to the outcomes of AP TTB, FV and EV increased ML TTB in bilateral-

Fig 2. Static AP & ML plantar shear spreading and static CoP location % with standard deviations. The horizontal red line is the central position (50% of a foot

length). � Significant compared to NV.

https://doi.org/10.1371/journal.pone.0246605.g002

Fig 3. Standing CoP location% in bilateral-foot trials and single-foot trials and CoP speed with standard deviation. The horizontal red line is the central position

(50% of a foot length). � Significant compared to NV. ¶ Significant compared to FV. + Significant compared to EV.

https://doi.org/10.1371/journal.pone.0246605.g003
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foot trials as compared to NV, while only EV showed an increase in AP TTB in single-foot tri-

als compared to NV (Fig 5). Table 2 provides the outcomes of the standing test in summary.

Walking test

The average walking speed was 1.22 m/s (± 0.28). Main effects were found for both braking

and propulsive impulses (p< .001, p< .001, respectively) (Fig 6). According to the pairwise

Fig 4. Standing AP & ML foot CoP ranges with standard deviation. ¶ Significant compared to FV. + Significant compared to EV.

https://doi.org/10.1371/journal.pone.0246605.g004

Fig 5. Standing AP & ML TTB with standard deviation. � Significant compared to NV.

https://doi.org/10.1371/journal.pone.0246605.g005

Fig 6. Walking peak braking force, plantar braking impulse (BI) & propulsive impulse (PI), and AP & ML plantar spreading with standard deviation. �

Significant compared to NV. ¶ Significant compared to FV. + Significant compared to EV.

https://doi.org/10.1371/journal.pone.0246605.g006
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comparisons, FV and EV increased braking impulse and propulsive impulse compared to NV.

Meanwhile, EV showed further increase in braking impulse and propulsive impulse as com-

pared to FV (Fig 6). For plantar shear spreading forces, there were main effects in both AP

(p< .001) and ML (p< .001), respectively. Based on the pairwise comparisons, FV and EV

increased AP plantar shear forces and ML plantar shear forces as compared to NV. Interest-

ingly, while AP plantar shear spreading forces were even greater in FV than in EV, ML plantar

shear forces were conversely greater in EV than in FV (Fig 6). Table 3 provides the outcomes

of the walking test in summary.

Discussion

Static test

The purpose of the static test was to isolate the effects of added body mass on plantar loading

without balance related influences. As expected, added body mass resulted in increased plantar

spreading in both AP and ML directions. However, there were no differences in spreading

between FV and EV conditions, nor did we see a change in CoP location in the static tests. It is

possible that the weight distribution in the FV condition did not change the CoM far enough

anterior to see larger effects on these variables. Alternately, the controlled posture and hand

assistance may have resulted in elevated activity of the neuromuscular system in order to

maintain the upright position.

While elevated plantar spreading was expected, this study represents the first measurement

of plantar shear forces in this context. Plantar spreading forces were slightly increased above

the 20% increase in net vertical force, with ML spreading (34% FV and 25% EV) slightly

greater than AP spreading (21% FV and 29% EV), but both suggestive of plantar skin shearing

as well as deforming effects on the transverse and medial longitudinal foot arches. A few previ-

ous studies have indirectly investigated the effects of mass on medial longitudinal arch defor-

mation [36–38]. Comparing seated and standing arch height, Butler at al. reported a 3 mm

change in arch height [36] while Xiong et al. reported a 6% change in foot length [37]. Wright

et al. added 10 kg to the knee of seated participants, measuring a 1 mm drop in arch height

that became greater as the tibia moved anterior [38]. However, these studies examined normal

weight loading, rather than changes due to loading beyond normal body weight. In contrast,

Kern et al. used a weighted vest during walking, finding no difference in arch height with

added mass [39]. Yet, obese individuals have lower arches [40]—this plantar spreading could

represent a mechanism for long term arch collapse.

Postural control tests

Similar to the CoP location in the static test, the CoP location in the bilateral-foot trials did not

show any differences among conditions. However, in the more challenging single-foot trials,

FV elicited a 3% forward shift in CoP. In single-foot standing, the participants were instructed

to slightly bend the knee of the support leg in order to avoid confounding effects, such as joint

locking. The flexed knee may have prevented any compensatory trunk extension in FV.

The increased plantar pressure and shear spreading that was quantified in the static test

may negatively influence standing postural control. Tactile perception thresholds appear to

increase with elevated pressure, in both obese [7] and healthy individuals (after standing and

walking with added mass) [15], suggesting reduced mechanoreceptor sensitivity with

increased sensory feedback (i.e. Weber’s law) [16]. While no studies have investigated the rela-

tionship between plantar shear stresses and plantar sensitivity, mechanoreceptors are expected

to receive contributions from both pressure and shear. This reduced plantar cutaneous
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sensitivity has been associated with increased postural sway [7], thus driving our decision to

simultaneously investigate postural sway measures.

In contrast to our hypothesis, FV showed no differences in postural control metrics com-

pared to EV. Furthermore, both EV and FV consistently showed lower CoP range, lower CoP

speed, and greater TTB(s) than NV. While this was not completely unexpected in EV, previous

studies utilizing backpacks have shown increased postural sway [21]. It is likely that in our

study the FV condition did not displace the CoM anteriorly as much as a heavy backpack can

displace CoM posteriorly. Yet, this condition is much more similar to CoM changes seen in

obesity. The changes in postural control metrics seen in both conditions are traditionally

thought to represent an increase in postural stability. However, our results and others suggest

that this perspective should be interpreted cautiously, as reduced movement variability does

not always indicate healthy or good postural stability, particularly in young, asymptomatic

individuals [41]. For example, one previous study observed that young participants demon-

strated increased variability when placed in a neutral posture as compared to more challenging

AP leaning postures while older participants exhibited the reverse [34]. Healthy young individ-

uals have a sensitive neuromuscular system that can easily detect changes in stimuli and alter

neuromuscular function to compensate [42]. Both weighted conditions may have stimulated

the participants to focus more intently on achieving postural equilibrium through sensory re-

weighting and/or increased muscle activation [43]. Young healthy subjects may be able to

more easily utilize other body systems (e.g., proprioception, visual, and vestibular systems) in

order to compensate for degraded plantar mechanoreceptor sensitivity. For instance, there is

evidence of sensory reweighting in a disruptive injury such as chronic ankle instability [43]. In

addition, quick reflex-induced postural reactions may have compensated for the greater ankle

joint torques induced by the extra load [44]. In other words, the seemingly increased postural

stability in FV and EV may result from the ability to flexibly adapt to changing conditions,

rather than representing real improved postural stability [41]. In the current study, much

greater increases in mass and forward positioning are likely needed to truly challenge postural

control in this population. However, pilot testing suggested that this level of added mass (i.e.

obesity instead of overweight) would be difficult to achieve without discomfort inducing addi-

tional postural compensations (e.g. too much load on the vest straps). To truly simulate the

effects of obesity on postural control, follow-up studies would require novel methodology to

add body mass and distribution to reach obesity without any discomfort.

Walking test

Walking was included in this study to evaluate the manner in which added body mass and dis-

tribution affects plantar loading during a common dynamic movement, and how this might

ultimately influence postural control. As expected, we found strong influences in all loading

metrics from both conditions compared to NV. Previous studies on both load carriage and

obesity have shown that when using absolute force, most plantar loading metrics increase;

however, when normalized to body mass these differences disappear [45, 46]. We did not nor-

malize to total body mass as our primary purpose was to compare between loaded conditions.

In all four chosen metrics, we saw differences between FV and EV.

Both braking and propulsive impulses were lower in FV than EV. These differences appear

to be consistent with greater postural instability in FV than EV during the dynamic tasks.

While postural instability was not apparent in the standing postural control tests, dynamic

movements like walking should be much harder to adapt to. Previous load carriage studies

show that healthy young individuals walking with a heavy backpack decrease stride length and

increase double support time by decreasing hip and knee sagittal plane angular displacement
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[47]. Although we did not analyze kinematics, we suspect that FV elicits similar compensations

with a purpose of increasing dynamic postural stability. For example, shortening stride length

allows for a more stable position at initial contact with a more forward CoP and shorter single

support time, theoretically resulting in decreased braking and propulsive impulses. In contrast,

the more stable EV condition should elicit these compensations to a lesser degree. In addition,

a heavy backpack tends to alter upper extremity posture, resulting in greater trunk flexion with

accompanying elevated back muscle activity [48]. The differences in both braking and propul-

sive impulses may be due to altered upper extremity posture, potentially with FV hyperextend-

ing their trunk during walking in order to compensate for a more forward CoM. For future

studies, adding kinematic variables will be helpful to better understand the relationship

between body distribution and impulses.

Unlike walking impulses, plantar shear spreading forces showed different interactive effects

between body mass and body location. As expected, FV and EV both showed greater plantar

shear forces than NV. Interestingly, however, EV increased ML plantar shear spreading forces

more than FV, while conversely, FV increased AP plantar shear spreading forces more than

EV. The increased AP spreading forces in FV occur during midstance, and may be due to a

more forward positioned CoP and greater midfoot torque. While we cannot confirm this

mechanism in this study, this increased AP spreading does indicate additional stress on the

medial longitudinal arch of the foot and may be a contributing mechanism to altered foot mor-

phology over time. This should be further investigated. It is not clear to us why ML spreading

stresses were conversely higher in EV; we can only speculate potential kinematic changes such

as stride width. This dichotomy requires further investigation. While we did not measure foot

kinematics, Kern et al. did not show any differences in midfoot kinematics with added body

mass (similar to our EV condition) [39]. Our results suggest that plantar shear forces may be

altered without noticeable midfoot kinematics and eventually lead to damage of soft tissues

over time. In addition, these stresses appear to be dependent on body mass distribution. How-

ever, to clarify the effects of plantar shear forces on foot morphology, follow-up studies are

necessary.

In both FV and EV, plantar force metrics are elevated above NV, with several clinical impli-

cations. In addition to concerns over postural control and falling, greater loading in general

may increase the incidence of other pathologies such as osteoarthritis [49]. As mentioned

above, the increased plantar shear spreading forces in both FV and EV likely also alters plantar

mechanoreceptor sensitivity. This may be a critical concern in neurological pathologies such

as diabetes, where neuropathy may potentially be influenced by altered shear spreading [50].

Body mass distribution may be also an important factor in these pathologies. For example, one

study reported that after walking with a backpack (30% of body weight) for just 10 minutes,

healthy young participants showed reduced somatosensory function concurrently with

increased AP postural sway [51]. However, the participants did not alter somatosensory func-

tion after walking with a double-pack that was the same weight as the backpack. To authenti-

cate the relationship between plantar shear and plantar mechanoreceptor sensitivity, more

information is needed from future studies.

Finally, the increased plantar shear spreading could also represent altered energetics.

Increased plantar shear stresses are likely associated with increased energy dissipation in the

form of heat, which could reduce walking efficiency even beyond that due solely to the added

energy need to raise and propel body mass forward [52]. This may make the proportionally

lower efficiency in obesity even more impressive [53]. Of course, the full contribution of shear

stresses to walking energetics requires additional research.
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Conclusions

Elevated body mass increased plantar shear spreading forces in both standing and walking.

This did not result in decreased standing postural control, likely due to the use of healthy

young participants, who can flexibly adapt to acute external stimuli in a simple standing task.

However, differences between loading conditions in the walking tasks suggest that body mass

distribution does influence plantar loading and likely dynamic postural control. The effects of

body weight and distribution on postural control may depend on the task difficulty (static vs.

dynamic task). This study represents the first measurement of plantar shear stresses in the con-

text of altered body mass, and helps identify future study directions. Specifically, follow-up

studies are necessary in other populations, such as obese individuals who chronically carry

excessive mass in the abdomen. Additionally, since we exclusively tested young male partici-

pants, our results may not fully generalized to females or elderly individuals, and factors

related to these populations should also be considered. Furthermore, integrating kinetic mea-

surements with kinematic and neuromuscular variables will provide further insights on how

plantar shear influences dynamic tasks like gait.
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21. Rugelj D, Sevšek F. The effect of load mass and its placement on postural sway. Applied ergonomics.

2011; 42(6):860–6. https://doi.org/10.1016/j.apergo.2011.02.002 PMID: 21356532

22. Son SM. Influence of obesity on postural stability in young adults. Osong public health and research per-

spectives. 2016; 7(6):378–81. https://doi.org/10.1016/j.phrp.2016.10.001 PMID: 28053843

23. Strzalkowski ND, Triano JJ, Lam CK, Templeton CA, Bent LR. Thresholds of skin sensitivity are partially

influenced by mechanical properties of the skin on the foot sole. Physiological reports. 2015; 3(6). Epub

2015/06/11. https://doi.org/10.14814/phy2.12425 PMID: 26059035

24. Otten E. Balancing on a narrow ridge: biomechanics and control. Philosophical Transactions of the

Royal Society of London Series B: Biological Sciences. 1999; 354(1385):869–75. https://doi.org/10.

1098/rstb.1999.0439 PMID: 10382221

25. Morasso PG, Schieppati M. Can muscle stiffness alone stabilize upright standing? Journal of neuro-

physiology. 1999; 82(3):1622–6. https://doi.org/10.1152/jn.1999.82.3.1622 PMID: 10482776

PLOS ONE Added body mass alters plantar shear stresses, postural control, and gait kinetics: Implications for obesity

PLOS ONE | https://doi.org/10.1371/journal.pone.0246605 February 5, 2021 14 / 16

https://doi.org/10.1186/1476-5918-7-4
http://www.ncbi.nlm.nih.gov/pubmed/18304350
https://doi.org/10.4278/0890-1171-21.5.460
https://doi.org/10.4278/0890-1171-21.5.460
http://www.ncbi.nlm.nih.gov/pubmed/17515011
https://doi.org/10.1016/j.neulet.2014.09.029
http://www.ncbi.nlm.nih.gov/pubmed/25242449
https://doi.org/10.1016/j.jbiomech.2018.08.017
http://www.ncbi.nlm.nih.gov/pubmed/30205976
https://doi.org/10.1016/j.clinbiomech.2008.02.004
http://www.ncbi.nlm.nih.gov/pubmed/18374462
https://doi.org/10.1589/jpts.28.2587
https://doi.org/10.1589/jpts.28.2587
http://www.ncbi.nlm.nih.gov/pubmed/27799700
https://doi.org/10.1016/j.gaitpost.2014.11.010
http://www.ncbi.nlm.nih.gov/pubmed/25482032
https://doi.org/10.1002/j.1550-8528.1999.tb00410.x
https://doi.org/10.1002/j.1550-8528.1999.tb00410.x
http://www.ncbi.nlm.nih.gov/pubmed/10348502
https://doi.org/10.2165/00128071-200708010-00001
http://www.ncbi.nlm.nih.gov/pubmed/17298101
https://doi.org/10.1016/j.apergo.2012.10.016
https://doi.org/10.1016/j.apergo.2012.10.016
http://www.ncbi.nlm.nih.gov/pubmed/23157973
https://doi.org/10.1186/s40779-018-0175-4
https://doi.org/10.1186/s40779-018-0175-4
http://www.ncbi.nlm.nih.gov/pubmed/30115124
https://doi.org/10.1016/0025-5564%2894%2990083-3
http://www.ncbi.nlm.nih.gov/pubmed/8081050
https://doi.org/10.1016/j.jbiomech.2009.03.006
https://doi.org/10.1016/j.jbiomech.2009.03.006
http://www.ncbi.nlm.nih.gov/pubmed/19386313
https://doi.org/10.1016/j.gaitpost.2018.08.039
https://doi.org/10.1016/j.gaitpost.2018.08.039
http://www.ncbi.nlm.nih.gov/pubmed/30193176
https://doi.org/10.1080/00140138508963251
https://doi.org/10.1080/00140138508963251
http://www.ncbi.nlm.nih.gov/pubmed/4065090
https://doi.org/10.1016/j.gaitpost.2013.08.018
https://doi.org/10.1016/j.gaitpost.2013.08.018
http://www.ncbi.nlm.nih.gov/pubmed/24021525
https://doi.org/10.1016/j.apergo.2011.02.002
http://www.ncbi.nlm.nih.gov/pubmed/21356532
https://doi.org/10.1016/j.phrp.2016.10.001
http://www.ncbi.nlm.nih.gov/pubmed/28053843
https://doi.org/10.14814/phy2.12425
http://www.ncbi.nlm.nih.gov/pubmed/26059035
https://doi.org/10.1098/rstb.1999.0439
https://doi.org/10.1098/rstb.1999.0439
http://www.ncbi.nlm.nih.gov/pubmed/10382221
https://doi.org/10.1152/jn.1999.82.3.1622
http://www.ncbi.nlm.nih.gov/pubmed/10482776
https://doi.org/10.1371/journal.pone.0246605


26. Goss LP, Crafton JW, Davis BL, McMillan GR, Berki V, Howe AE, et al. Plantar pressure and shear

measurement using surface stress-sensitive film. Measurement Science and Technology. 2019; 31

(2):025701.

27. Chang E, Varghese M, Singer K. Gender and sex differences in adipose tissue. Current diabetes

reports. 2018; 18(9):69. https://doi.org/10.1007/s11892-018-1031-3 PMID: 30058013

28. Bruening DA, Baird AR, Weaver KJ, Rasmussen AT. Whole body kinematic sex differences persist

across non-dimensional gait speeds. Plos one. 2020; 15(8):e0237449. https://doi.org/10.1371/journal.

pone.0237449 PMID: 32817696

29. Harbo T, Brincks J, Andersen H. Maximal isokinetic and isometric muscle strength of major muscle

groups related to age, body mass, height, and sex in 178 healthy subjects. European journal of

applied physiology. 2012; 112(1):267–75. https://doi.org/10.1007/s00421-011-1975-3 PMID:

21537927

30. Frimenko R, Goodyear C, Bruening D. Interactions of sex and aging on spatiotemporal metrics in non-

pathological gait: a descriptive meta-analysis. Physiotherapy. 2015; 101(3):266–72. https://doi.org/10.

1016/j.physio.2015.01.003 PMID: 25702092

31. Organization WH. Physical status: The use of and interpretation of anthropometry, Report of a WHO

Expert Committee. 1995.

32. Binkley JM, Stratford PW, Lott SA, Riddle DL, Network NAORR. The Lower Extremity Functional Scale

(LEFS): scale development, measurement properties, and clinical application. Physical therapy. 1999;

79(4):371–83. PMID: 10201543

33. Lelas JL, Merriman GJ, Riley PO, Kerrigan DC. Predicting peak kinematic and kinetic parameters from

gait speed. Gait & posture. 2003; 17(2):106–12. https://doi.org/10.1016/s0966-6362(02)00060-7 PMID:

12633769

34. Van Wegen E, Van Emmerik R, Riccio G. Postural orientation: age-related changes in variability and

time-to-boundary. Human movement science. 2002; 21(1):61–84. https://doi.org/10.1016/s0167-9457

(02)00077-5 PMID: 11983434

35. Lakens D. Calculating and reporting effect sizes to facilitate cumulative science: a practical primer for t-

tests and ANOVAs. Frontiers in psychology. 2013; 4:863. https://doi.org/10.3389/fpsyg.2013.00863

PMID: 24324449

36. Butler RJ, Hillstrom H, Song J, Richards CJ, Davis IS. Arch height index measurement system: estab-

lishment of reliability and normative values. Journal of the American Podiatric Medical Association.

2008; 98(2):102–6. https://doi.org/10.7547/0980102 PMID: 18347117

37. Xiong S, Goonetilleke RS, Zhao J, Li W, Witana CP. Foot deformations under different load-bearing

conditions and their relationships to stature and body weight. Anthropological Science. 2009; 117

(2):77–88.

38. Wright WG, Ivanenko YP, Gurfinkel VS. Foot anatomy specialization for postural sensation and control.

J Neurophysiol. 2012; 107(5):1513–21. Epub 2011/12/14. https://doi.org/10.1152/jn.00256.2011 PMID:

22157121

39. Kern AM, Papachatzis N, Patterson JM, Bruening DA, Takahashi KZ. Ankle and midtarsal joint quasi-

stiffness during walking with added mass. PeerJ. 2019; 7:e7487. https://doi.org/10.7717/peerj.7487

PMID: 31579566

40. Kathirgamanathan B, Silva P, Fernandez J. Implication of obesity on motion, posture and internal stress

of the foot: an experimental and finite element analysis. Computer methods in biomechanics and bio-

medical engineering. 2018:1–8. Epub 2018/11/07. https://doi.org/10.1080/10255842.2018.1527320

PMID: 30398076.

41. Van Emmerik RE, Van Wegen EE. On the functional aspects of variability in postural control. Exercise

and sport sciences reviews. 2002; 30(4):177–83. https://doi.org/10.1097/00003677-200210000-00007

PMID: 12398115

42. Scaglioni G, Narici M, Maffiuletti N, Pensini M, Martin A. Effect of ageing on the electrical and mechani-

cal properties of human soleus motor units activated by the H reflex and M wave. The journal of physiol-

ogy. 2003; 548(2):649–61. https://doi.org/10.1113/jphysiol.2002.032763 PMID: 12588895

43. Song K, Burcal CJ, Hertel J, Wikstrom EA. Increased Visual Use in Chronic Ankle Instability: A Meta-

analysis. 2016.

44. Ritzmann R, Freyler K, Weltin E, Krause A, Gollhofer A. Load dependency of postural control-kinematic

and neuromuscular changes in response to over and under load conditions. PloS one. 2015; 10(6):

e0128400. https://doi.org/10.1371/journal.pone.0128400 PMID: 26053055

45. Castro MP, Santos R, Abreu S, Sousa H, Machado L, Vilas Boas J. Force and pressure analysis during

occasional loaded gait. Applied Ergonomics. 2012.

PLOS ONE Added body mass alters plantar shear stresses, postural control, and gait kinetics: Implications for obesity

PLOS ONE | https://doi.org/10.1371/journal.pone.0246605 February 5, 2021 15 / 16

https://doi.org/10.1007/s11892-018-1031-3
http://www.ncbi.nlm.nih.gov/pubmed/30058013
https://doi.org/10.1371/journal.pone.0237449
https://doi.org/10.1371/journal.pone.0237449
http://www.ncbi.nlm.nih.gov/pubmed/32817696
https://doi.org/10.1007/s00421-011-1975-3
http://www.ncbi.nlm.nih.gov/pubmed/21537927
https://doi.org/10.1016/j.physio.2015.01.003
https://doi.org/10.1016/j.physio.2015.01.003
http://www.ncbi.nlm.nih.gov/pubmed/25702092
http://www.ncbi.nlm.nih.gov/pubmed/10201543
https://doi.org/10.1016/s0966-6362%2802%2900060-7
http://www.ncbi.nlm.nih.gov/pubmed/12633769
https://doi.org/10.1016/s0167-9457%2802%2900077-5
https://doi.org/10.1016/s0167-9457%2802%2900077-5
http://www.ncbi.nlm.nih.gov/pubmed/11983434
https://doi.org/10.3389/fpsyg.2013.00863
http://www.ncbi.nlm.nih.gov/pubmed/24324449
https://doi.org/10.7547/0980102
http://www.ncbi.nlm.nih.gov/pubmed/18347117
https://doi.org/10.1152/jn.00256.2011
http://www.ncbi.nlm.nih.gov/pubmed/22157121
https://doi.org/10.7717/peerj.7487
http://www.ncbi.nlm.nih.gov/pubmed/31579566
https://doi.org/10.1080/10255842.2018.1527320
http://www.ncbi.nlm.nih.gov/pubmed/30398076
https://doi.org/10.1097/00003677-200210000-00007
http://www.ncbi.nlm.nih.gov/pubmed/12398115
https://doi.org/10.1113/jphysiol.2002.032763
http://www.ncbi.nlm.nih.gov/pubmed/12588895
https://doi.org/10.1371/journal.pone.0128400
http://www.ncbi.nlm.nih.gov/pubmed/26053055
https://doi.org/10.1371/journal.pone.0246605


46. Neri SGR, Gadelha AB, Correia ALM, Pereira JC, de David AC, Lima RM. Obesity is associated with

altered plantar pressure distribution in older women. Journal of Applied Biomechanics. 2017; 33

(5):323–9. https://doi.org/10.1123/jab.2016-0357 PMID: 28422549

47. Birrell SA, Haslam RA. The effect of military load carriage on 3-D lower limb kinematics and spatiotem-

poral parameters. Ergonomics. 2009; 52(10):1298–304. https://doi.org/10.1080/00140130903003115

PMID: 19787507

48. Dahl KD, Wang H, Popp JK, Dickin DC. Load distribution and postural changes in young adults when

wearing a traditional backpack versus the BackTpack. Gait & posture. 2016; 45:90–6.

49. Sabharwal S, Root MZ. Impact of obesity on orthopaedics. JBJS. 2012; 94(11):1045–52. https://doi.

org/10.2106/JBJS.K.00330 PMID: 22637211

50. Davis B, Crow M, Berki V, Ciltea D. Shear and pressure under the first ray in neuropathic diabetic

patients: Implications for support of the longitudinal arch. Journal of biomechanics. 2017; 52:176–8.

https://doi.org/10.1016/j.jbiomech.2016.12.024 PMID: 28093260

51. Li SSW, Chan OHT, Ng TY, Kam LH, Ng CY, Chung WC, et al. Effects of backpack and double pack

loads on postural stability. Ergonomics. 2018:1–11.

52. Browning RC, Modica JR, Kram R, Goswami A. The effects of adding mass to the legs on the energetics

and biomechanics of walking. Medicine & Science in Sports & Exercise. 2007; 39(3):515–25. https://

doi.org/10.1249/mss.0b013e31802b3562 PMID: 17473778

53. Browning RC, Kram R. Effects of obesity on the biomechanics of walking at different speeds. Medicine

& Science in Sports & Exercise. 2007; 39(9):1632–41. https://doi.org/10.1249/mss.0b013e318076b54b

PMID: 17805097

PLOS ONE Added body mass alters plantar shear stresses, postural control, and gait kinetics: Implications for obesity

PLOS ONE | https://doi.org/10.1371/journal.pone.0246605 February 5, 2021 16 / 16

https://doi.org/10.1123/jab.2016-0357
http://www.ncbi.nlm.nih.gov/pubmed/28422549
https://doi.org/10.1080/00140130903003115
http://www.ncbi.nlm.nih.gov/pubmed/19787507
https://doi.org/10.2106/JBJS.K.00330
https://doi.org/10.2106/JBJS.K.00330
http://www.ncbi.nlm.nih.gov/pubmed/22637211
https://doi.org/10.1016/j.jbiomech.2016.12.024
http://www.ncbi.nlm.nih.gov/pubmed/28093260
https://doi.org/10.1249/mss.0b013e31802b3562
https://doi.org/10.1249/mss.0b013e31802b3562
http://www.ncbi.nlm.nih.gov/pubmed/17473778
https://doi.org/10.1249/mss.0b013e318076b54b
http://www.ncbi.nlm.nih.gov/pubmed/17805097
https://doi.org/10.1371/journal.pone.0246605

